
NATIONAL

‘-i- . *#+*=f’f~-a=fid%k-iz.:.Y*+

,Li , .>,_”” _—-—-,

ADVISORY COMMITTEE FOR AERONA,. .

WAIWIME Rlwolrr
ORIGINALLY ISSUED
August1$1~aa

AdvanceRestrictedReportL4H23

APPLICATION OF TBEMEI’HODOFLEN31

ENGINE-COOLINGANALYSIS

By BlakeW. Corson,Jr.

SQUJWESTO

LangleyMemorialAeronauticalLaboratory
LangleyField,Va.

:.,,~,., N A c A LIBRARY

.. .... -. ~,: 1-,

NACA WARTIME REPORTS are reprintsofpapersoriginallyissuedtoproviderapiddistributionof
advanceresearchresultstoan authorizedgroup requitingthem forthewar effort.They were pre-
viouslyheldunder a securitystatusbutare now unclassified.Some ofthesereportswere nottech-
nicallyedited.All have been reproducedwithoutchsngeinordertoemedite genersldistribution.

L- 130



*

llAOA ~ ~0, 4H23 ~

NATIONAL ADVISORY COMMIT!EE?I

-- :-----ADvANii IumRmxm

APPLICATION OF THE MWN i)DOF

FOR AERONAUTICS

m=!cw .,”- . . . . . . .

LEAST SQUARES TO

ENGINE-COOLING “ANALYS15

By Blah W. Corson, Jr.

SUMMARY

The flexibility of’the NACA method of correlating
engine-cooling dqta is shown in this report to be improved
when the data.are adjusted analytically to the correlation
equation by the method of’least squares. Engine-cooling
data, to be correlated graphically, must be obtained from
tests In which engine-charge-air flow and cooling-air
flow are carefully controlled. The least-squares method
is adapted to the correlation of’sngine-cooling data In
which the flows of’charge air and oooling air, if measured
accurately, may-be varied in any manner. The values of
the correlation exponents determined by the least-squares
method are unique and are not dependent upon the curve-
fairlng ability of the analyst.

Curve fitting by the method of least squares is
discussed briefly and a solution is indicated for the
values of the constants in an equation that can be
identified with the engine-coollng-correlationequation.
The NACA method of correlating engine-cooling data Is
Illustrated by a graphical analysis of typical engine-
ooollng data. The same data are then correlated by
the least-squares method. It Is demonstrated that
engine-coolhg data not adapted to graphical cor~la-
tion may be easily reduced by the least-squares method.

INTRODUWCION

The JJACAmethod of correlating enjzinetemperatures
with the principal variables that ~ete;mine en&ine “.
temperature has been developed for application as a
graphical method (references 1 2, and 3). An essential
step in the graphical process !s the evaluation of constant
exponents in the correlation equation from logarithmic
graphs of data for which either engi.ne-charge-alrflow
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or oooling-alr
tests. It is

flow was held constant for a series
frequently difficult, especially In

M.=!3

of
flight

testing, to maintain perfect oonstancy of the englne-
operation variables~ Uhder this condition the data
can be correlated graphically only after trial and error
corrections have been applied. Such data can be corre-
lated dlreotly by the method of least squares with
precision limited only by t~ accuracy of the data.
When data can be obtained from very carefully controlled
tests, a graphical correlation of the data can be
performed more rapidly than a least-squares correlation
and with equal preoislon. me least-squares method is
recommended primarily for the correlation of engine data
in which the engine-operation variables, although measured
accurately, could not be held constant. A less Important,
though interesting, application of the least-squares method
Is its use as a supplement to the graphical correlation.

If the method of least squares is to be applied to
the analysis of any data, it Is necessary to know the
form of the equation to which the data are to be fitted.
The NACA method of correlating engine-cooling data
employs the correlation equation In various forms.
The present work identifies one form of the equation
with a simple expression involvtng three variables and
three unknown constants; the method of least squares is
applled to determine the values of the constants in the
equation. Inasmuch as the method of least squares does
not require a systematic change In any of the variables,
engine-cooling data involving simultaneous and irregular
variation of engine-charge-air flow and coollng-air flow
can be correlated analytically with preclslon,

The purpose of this report is to show that It is
‘practical to apply a least-squares method to the correla-
tion of engine-cooling data. The theory of least
squares will be discussed briefly and a general solution
will be obtained for the values of three unknown constants
In an equation of three variables. Engine-cooling-
correlation procedure will be described briefly and a
graphical presentation of typical data will be supplemented
by a least-squares correlation of the same data. The
least-squares method will
cooling data which cannot
graphical method.

be used to correlate englne-
readlly be correlated by a
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Curve Fitting by the Method of’Least Squares

The theory of least squares holds an important place
In the mathematics of observations and is closely related
to the laws of probability and the GaussIan law of’error.
A useful application in observational work is curve
fitting by the method of’least squares.

The term%urve flttln#applles to the deter”mlnation
of the values of the constants in an equation of assumed
form such that the chosen equation is the best explicit
representation of a given sat of data. If a deviation
is defined as the difference between a datum value of the
dependent variable and the corresponding value on the
fitted curve, a curve 1s regarded as representing the
best fit to a given set of data when the sum of the
squared deviations Is a minimum. This condition also
demands that the sum of the deviations be zero. The
form of the equation is always an assumption whether It
be admittedly empirical or undeniably based on physical
laws.

The derivation of conventional formulas for curve
fitting by the method of least squares is given in a
number of textbooks; three such textbooks are liste”d
as references 4, 5, and 6. A slmplifiad derivation will
be given herein for an equation of three variables and
three unknown constants. The form of the equation
chosen can be identified with the NACA cooling-
correlatlon equation.

Data are given as a collection of coordinate”
values of the variables x, y, and Z: (xl, Yl~ Z1)J

b%, Y2, 22), ... (~, yn, zn), where n 1S the .
number of values. Assume that the variable y can
be represented explicitly in terms of the variables x
.and z by an equation of the form

.
Y= U +bz + C (1)

where a, b, and c are constants. It is desired to
determine such values of the constants a, b, and o. that ““
equation (1) will most closely fit the data. Represent

.—.-— —-—
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any point by (XI$ YiS Zi)D If x and z are regarded
as Independent variables, the deviation Ui of any datum
value yl from.the locus of equation (1) is

61=y1-y

8f = Y~ -“axi - bzi - c (2)

According to the theory of least squares, equation (1)
wI1l bgst fit the data when the sum of the squared
deviations 1s a mlnlmum. Let the sum of the sauared “.
deviations be S; that is, .

Insofar as the coefficients
the value of S, this value

as b, and c may affect
will be a minimum when

as ds M=o
mi=O’tm=O’?K

A squared deviation Is

@ = Y12+ a2xi2 + b2z~2 + C2

-2axiyi - 2bziyi - 2CY1

+ 2abxizl + 2bczi + 2acxi

““Sumthe squared deviations and drop the subscripts.

i=l I E E.2axy-2bzy-2cy

z.+ 2ab X2 + 2bc
L I
z + 2ac x

Then,

.
.—.—--- -1
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m. ...The.PQrti,q,ld,~r,i,vat~v?,y,of” S with respect to a, b, and c,
respectively, are . . .. ....... . ,.!,-...!.-

The partial derivatives equated to zero yield
three equations \

The equations (3) solved simultaneously give the
valuas of the constants a, b, and c that will make
equation (1) best fit the data. A general solution “
for the values of’ a, b, and c, with a numerical example,
is given in appendix A.

In order to obtain the values of the constants a,
b, and c, either graphically or by the method of least
squares, the experimental values of the original data
must actually contain sufficient information for the
purpose. It is desirable to have a large number of
test points covering a wide range for all the variables.
Occasionally, the simultaneous eqllations(3) are nearly
exact multiples of each other, for which case the values
of a, b, and c would be Indeterminate. This result
may be due to insufficient range of the data. The
solution of equat~ons (3) may someti:~esappear Inexact
when dero:’minedty ratios of small differences between
relatively I.argequantities. It must be remembered
that the sums of the squares and products of the datum
values are accurate to the same number Of decimal places
as the indiv:dml values; small di.fferen.esbatween
large sums are llkewise accurate to that number of
decimal pl~ces. The detail required in the calculations
therefore makes desirable the use of’a calculating machine
in solving equations (3).
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Advantages of I#aat-Squares Method

Curve fitting by the method of least squares has
several advantages over a graphical method. One
advantage is that the determined value of each constant
is unique. Least-squares computations performed without
error and with the proper precision can yield only that
value of each constant which the data determine. The
human element is not involved as is the case with graphi-
cal falrlng.

A second advantage fs the quantitative measure of
the deviation of each datum value from the best determi-
nable value. Using datum values of the independent
variables x and z permits the corresponding deviation
of y to be computed by use of equation (2). A small
value for the am of the deviations (ideally zero) indi-
cates that the computations are probably free from error.
Experimental values that have a deviation greater than
the estimated experimental accuracy may be discarded.
A repetition of the work then yields much more reliable
values of the constants in equation (l). The squared
deviations may also be tabulated and the standard devia-
tion and a simple form of the probable error computed
by equations (4) and (5), respectively, as

F62

Standard deviation = * — n (4)

r
z /32

Probable error = ~0.67 —
n (5) .

The standard deviation represents a mean deviatlon”for
all the data. Probable error is the limit of error
for one-half the experimental data.

APPLICATION OF METHOD OF LEAST SQUARRS

The Engine-Cooling-Correlation‘~uation

The engine-cooling-correlationmethod was developed
to coordinate engine temperatures with the prfnclpal
variables that determine engine temperatures. A few
tests made under carefully controlled operating condi-
tions, easily attainable In a wind tunnel or on a

—- ,- .
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test stand, serve to establish an aglne-coollng
correlation. This correlation may then be used to
predict engine temperatures that result from specified
operating conditions or to determine operating condi-
tions requisite to maintain specified temperature limlts.

In order to make coolfng tests cf an air-cooled
engine for presentation by the correlation method, It is
necessary to obtain, as basic data, measurements of the
quantities listed In the following-table of symbols:

‘h

Ta

Te

‘a

Ap

we

N

r

d

refergnce head temperatuzze(average indication of
all imbedded head thermocouples or all rear-
spark=plug Rasket thermocouples~, oF

cooling-air temperature (stagnation-airtemperature
in front of engine), OF

enfllnecharge-air temperature ahead of carburetor, ‘F -

cooling-air-densityratio based on stagnation
density in front of engine

cooling-air nressure drop aoross the engine,
inches of water

weight rate of charge-air flow (without fuel),
pounds per second

engine crankshaft speed, rpm

blo~~ergear ratio

blower impeller diameter, feet

A complete list of symbols appears in appendix B.

The principles of engine-cooling correlation and
the development of the technique of’applying these
principles are set forth In references 1. 2. and 3.
A general statement of’the correlation piln~iple Is
that the ratio of cooling-temperature differential to
heating-temperature differential ha
relationship ~etween internal flow of
and external flow of cooling fluid.
is e~ressed by

%-Ta Wea
~=cl-

function of’a
heating fluid
This relationship

.
. .

(6)

. ----- -—- -.— ------ .... --— ..-. — -— .. .- .- .-—. - ..- —- — --- .
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In equation (6),
are constant e~onents
respectively, and Tg
ture. whioh is defined

HACA ARR No. @23

c1 Is a constant, a and b
associated with We and uaAp,
is the mean effective gas tempera-
in references 1. 2. and 3. The

mean-effective gas temperature la a hfiol%etical average
temperature used in engine-analysis computations to
replace the continuously varying aotual temperature of
the charge and cabuetion products within the engine
cylinder. A procedure for computing the value of the
mean effective gas temperature 1s given in reference 7
for the Pratt & Whitney R-2800 engine. Equation (6)
is an engine-cooling-correlationequation based on
cooling-air pressure drop. For simplicity, only this
form of the equation will be used In the present report.

Graphical Correlation

The value of the exponent a can be determined
graphically by plotting on logarithmic coordinates the
ratio of the temperature differentials against weight
flow of charge air for tests In whloh the fuel-air ratio
and sea-level cooling-air pressure drop aa~p are held
oonstant. A plot of this t e is shown in figure 1

Y(data from table I, test 241 . Test numbers used
heretn are taken from reference 7, from which the data
were obtained. The slope of the line, 0.565, Is the
value of the exponent a. A similar plot of the ratio
of temperature &LfferentlaM against sea-level cooling-
atr pressure drop uaAp melds the value of the exponentb.
For the determination of the exponent b, tests must be
made with the weight flow of engine charge air held con-
s’tantand the fuel-air ratio held at the same constant
value as that used tn the tests to determine the expo-
nent a, A plot of the t~e used to detezmine the value
of b Is shown in figure 2 (data from table 1, test 240.
The slope of the curve, -0.321, is the negative value
of the exponent b.

The engine-cooling correlation (equation (6))
corresponding to the data presented in figures 1 and 2
oan now be written as

..-.—-~ ---- r. . . -~, .
* ~—- . .—

. . . ..7 . . . * . . . . : ~%...:=ti-..- . ,
T.~:: .b.—:. —-~-y-- — ---- ,-~. ......-+”-.”. . . . .

..

-. .. . . *, .: -- ..::..”-.*:. . : . ,,
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The value of’the constant c1 -can be established with
the same data as that used to find a and b by plotting
the ratio of te erature clifferentlals against the

( a~7’@)=relation We Such a plot is presented In
figure 3, which is the graphically established engine-
cooling correlation. The value of the constant
c1 = 0.560 was computed from coordinate values read
from the falred cumve. The graphically determined
correlation Is given by

~-Ta ()~el.’760“321D
= 0.560 ‘~ (8)

In order to use the correlation curve or equation
it Is necessary to know the variation of’reference mean
effective gas temperature ‘~80 with the fuel-air ratio;

a typical plot Is shown in figure 4. The subscript 80”
indicates that the valws of mean effective gas temperature
were determined when the ‘charge-airtemperature Te
was 800F. The curve in figure 4 was established
(referance 7) by use of equation (8) with the data from
tabls II,tasts 242 and 244. Mean effective gas tempera-
ture corrected for carburetor-air temperature and blower- .
temperature
figure 4:

‘6 = ‘g80 +

rise can be computed from-equation (9) and

[

## 1
*.

0.8 Te - 80 + ‘~g (N \1000)2 (9)

!lhederivation of equation (9) is given in reference 7.

Least-Squares Correlation

Two weaknesses exist in the graphical correlation
procedure just described. One weabess is the necessity
of maintaining a constant val~ of cooling-air pressure
drop for one series of’ runs and a constant value of
charge-air flow for another series of runs. TO hold
experimental values perfectly constant ig not possible.
A greater source of Uncjgrtainty f.s that, in fairing the
construction curves (figs.1 and 2), evaluation of the
exponents a and b depends upon the discretion of’
the auslyst. The use of least squares removes both

.. I .. ,. .

----- . . . ... . .. -..-.—. . . . . . . ... . . . .. .. . . ..- . ... --------- ------ ----- --
. .
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of these difficulties. Equation (6)
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expressed loga-
rithmically gives

r’)10g%% ‘ a10g
In equation (10) the
deliberately ignored

We ‘+ b log (oaAp) + log c1 (lo)

signs of the constants have been
because determination of the signs

of the constants.is of necessity performed in solving
for their values.

The following identities should be made of values
in equations (1) and (10):.

x 5 log we

Zs log (aaAp)

a =a
.

b ~b

Cs log c1

Equation (10) can now be mitten in the form of equation (1)~

Y= ax+bz+c

and the-values of the constants a, b, and c deter-
mined by the simultaneous solutlon OP equations (3)0

Inasmuch as there are three unknown constants in
equation (1) ( or (10}, at least three test points must
be known in order to solve for the values of’the constants
If only three points are known these may be substituted
directly in equation (1) (or (10)) and the resulting
three equations solved simultaneously. The values of
the constants a, b, and c so determined will yield “..
an equation satisfied by each of the three test points;
there can be no deviation of a point from the curve.
Unless the data are very accurate, the final equation
may be greatly in error. The use of only three test
points to determine.the values of the three constants
is the llmiting condition for application of the

-- -.. -- .... - ..- .-
. . .
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least-squares correlation; when the number of datum
. val.zes..-$sincreased, the reliability of the final equa-

tion Is improved. ““ “ ‘-’ ..... .. . .,-r- -.,,.

The most laborlous computations involved in the
application of least squares are those by which the sums
of the variables and their cross products are obtained.
These computations can be simplified by the use of forms
for systematic tabulation similar to table III. The
first three columns of table III contain datum values
of the correlation variables taken from table I. The
logarithms of the variables are listed In columns 6, 8,
and 10, respectively. In the remaining columns, through
11, there are listed the cross.products and squares of
the quantities In columns 6, 8, and 10. The order of
tabulation was chosen for convenience in making these
computations. The sums of the squares and cross products
obtained in table 111 have been used to set up equa-
tfons (11) of which equations (3) are the type:

1.97933a + 7.90275b + G.12224c = -2.95038 ~

7.90275a + 33.24726b + 25.50250c = .12.58602
}

(11)

6.12224a + 25.50250b + 20c = -9.74261 j

The simultaneous solution of equations (11) yields the
following values for the constants: (See appendix A.)

a = 0.578

b = -0.300 .

c = -0.281

The accuracy of the computations and the precision
of the correlation have been evaluated by the computa-
tions performed in columns 12 to 16 of table III. The
individual datum values x have been multiplied by the
determined value of a and the products ax listed
in column 12; similarly, in column 13 are tabulated
the products bz. For each individual datum value,
then, the sum of columns 12 and 13 and the constant c
Is tabulated In column 14, identified by

f (x, z). = ax +b~ + c (12)

..—
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Points established by equation (12) lie on the curve of
best fit; hence, the devlatlon of a datum value y of
the dependent variable Is determined by Its difference
from the point of best fit.

6 .-
-Y - f(x,z)

The deviations of the datum values of y from the curve
of best fit are tabulated In column 15, and the squared
deviations are tabulated in column 16. The very small
value of the sum of the deviations indicates that the
work is probably free from computational error. The
sum of the squared deviations has been used to find the
standard deviation and probable error, equations (4)
and (5).

The values of the constants a, b, and c deter-
mined by the work h table III were not regarded as final.
A study of column 15 showed that the deviations of five
of the test points (runs 7, 8, 9, 13, and 15) were
.considerably larger than the other deviations. These five
points were eliminated from the array of data and a
redetermination of the values of the constants was
performed in table IV. These values, which are
regarded as more reliable than those of table 111,
are shown in the following list, which is arranged for
a quick comparison with the values obtained In table III
and the values obtained by the graphical method:

Exponent a

Exponent b

Exponent a/b

Constant c

Constant c1

Standard
devlatton

Probable
error

n = 20

0.565

0.321

1.76

0.560

to,0099

First least-
squares

correlation
(Table III)

n = 20

0.578

0 ● 300

1.92

-0.281

0.523

~.0089

*O.0066 I fO.0060

Final least-
squares

correlation
(Table w)

n = 15

0.576

0,304

1.89

-0.276

0.529

to.0051

*O.0034

. ——.. —-- -
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The standard deviation a“ndprobable error shown in
the precedln8 table for the graphical method were obtainqd

. by using-the deviation of datum values from the loga-
ritlydc.form of equation (8). The standard deviation
Is a measure of the mean scatter of test points from the
fitted curve. Using standard deviation as a basis for
comparison, the final least-squares correlation (table IV)
yields the equation of these three equations that best
f’itsthe data. The engine-cooling-dorrelatton equations (13)
and (14) obtained by the least-squares method are directly
comparable with equation (8) obtained graphically
First least-squares correlation (table III)

‘h - ‘a
()

~el.92 0-300
= 0.523 ~

‘g - ‘h

Final least-squares correlation (table IV)

‘h - ‘a

()

W 1.89 0“304
= 0.529 ~

‘g - ‘h aP

(13)

(14)

In order to show how well these equations fit the
data by which they have been established, equation (13)
is showrlplotted In figure 5 and equation (14) “in fig-
ure 6. The first least-squares curve (fig. 5\, which
was established by the same data as were used for the
graphioal method, is directly comparable with the
graphical curve (fig. 3). The final least-squares
curve, figure 6, is established by select data (table IV)
and is regarded as a close approach to the best possible
adjustment.

A main purpose In applying the least-squares method
to the correlation of engine-cooling data 1s to provide
an exact and systematic means for finding the values of
the constants in the engine-cooling-correlationequation.
Precise correlation may not be very Important as regards
temperature prediction but in engine analysis every .
effort should be made to obtain the highest possible
preoislon. Two differ8nt correlations have been estab-
lished with the data listed In table I: the graphloal
correlation.

[
equation (8)

i
and the final least-squares

correlation. equation (14 . A comparison is shown in
flfqure7 Of the average cyllnder-~ad temperatures for
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two different operating conditions calculated by equa-
tions (8) and (14) as functions of cooling-air pressure
drop● The reasonably close agreement between the
temperatures predicted by the two equations shows that
for temperature prediction a precise correlation is not
necessary. On the other hand, the agreement between
the values of the exponents obtained by the first and
final least-squares correlations (tables III and IV)
shows the exactness of the least-squares method. The
fact that both least-squares correlations yielded equa-
tions from whtch the standard deviation of the data was .
less than that for the graphical correlation indicates
the greater precision of the least-squares method.

THZ CORREIATION OF MISC-JEOUS

ENGINE-COOLING DATA

In the comparison of the least-squares method of
correlating engine-cooling data wtth the graphical method
It was stated that the practice of making one series of
tests with constant cooling-air pressure drop and
another with constant engine-charge-air flow was not
essential if the data were to be correlated analytically.
In order to demonstrate this fact,special engine-cooling-
correlat~on tests were made and only the fuel-air ratio
was held constant (approximately 0.08); the engine speed,
charge-air flow, and cooling-air pressure drop were
deliberately varied from test to test. The data obtained
during these special tests and the enCine-cooling-
correlation computations are presented in table V. A
brief study of table V will show that the data are not
suited to graphical-analysis. A least-squares correla-
tion of all the data of table V (17 test points) is
perfomed in table VI. This correlation showed three
of the test points (runs 15, 17, and 18) to have rather
large deviations. These three test points were omitted
from the array, and a final least-squares correlation was
performed In table VII. The values obtained for the con-
stants were: a= O.563, b= -0.305, and c=log C1 =-0.271;
the corresponding engine-cooling correlation, expressed
by equation (15), is plotted in figure 8: .

Th - Ta

()

wel.85 0-305
= 0.535 —

‘g-~ oaAp
(15)
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. . . -----TheJdifferences between .the correlations,,equa-
tions (1.4.) and (15),may be due to ohanges”’inthe eng~
cowllng made between test 2@. and test 363 and also to
differences in fuel. lh tests *O, *1, *, and 244,
100-octane blue aviation gasoline was used, whereas
in test 363 the *1 was loo-octane green aviation gaso-
line containing aromatic compounds. The differences
between equations (14) and (15) are actually wlthln the
experimental accuracy of the engtn6 test data. Equa-
tion (15)and figure 8 Show that engine-cooling data not
adaptable to graphlca.1analysts maybe readily correlated
by the least-squares method.

If miscellaneous engine-cooling data in which there
was no systematic variation of charge- and cooling-alr
flows and for which the fuel-air ratio was not held
constant are available, an approximate correlation can
be obtained by use of the least-squares method and an
assumed variation of mean gas temperature with fuel-air
ratio. The reference mean effective gas temperature

‘8s0 of the charge and combustion products In an engine

cyllnder is a physical characteristic of the fuel-air
mixture and should be more or less the same for engines
of a given type. This fact Is borne out by similarity
of the variation of mean effective gas temperature with
fuel-air ratio for various air-cooled engines (refer-
ences 1, 2, 3, and 7). Only very small error should
result from the use of the gas-temperature curve,
figure 1, with data obtained from any air-cooled engine.
Use of this curve makes possible the evaluation of the
ratio of temperature differentials. The subsequent

. correlation of the data may be perfozmed graphically,
if the data are suitable, or by the least-squares method
in any case. An approximate oorrelatlon of miscellaneous
cooling data obtained by use of an assumed gas-temperature
curw should be useful at least for predicting engine
temperatures.

A danger In using the least-squares procedure is in
the temptation to attribute greater accuracy to the con-
stants of the correlation equation computed by this
process than is warranted by the accuracy of the data.
There Is no method or procedure for handllng data that
obviates the necessity for good judgment on the part of
the analyst.

I ..—. -.
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The application of the method of least squares to
supplement the use of the NACA engine-cooling-correlation
equation leads to the following conclusions:

1. Engine-cooling data, including data not adaptable”
to graphical analysis, can be correlated with precision
by the method of least squares.

2. The values of the constants in the correlation
equation detemined by the method of least squares are
unique and are not dependent upon the curve-falring
ability of the analyst.

Langley ?temorlalAeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va.

. .
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GEN%X?ALSOLUTION FOR THREE SIMULTA~OUS EQUATIONS

The oonstants a, b, and c of’equation (1) may
be evaluated by the shultaneous solution of’equations (3),
namely: %

(E”)a+E’+’
nc =

E Y

I ‘y

I Zy (3)

Tliesummations indicated In each of these equations may
be identified as follows:

E
‘2 ‘A= 1.97933

I
XZ = B = 7.90275

I
x= c = 6.12224

I
z ‘D = 25.50250

g
z’ =3= ~3.24726

I Xy ‘F= -2.95038

I
yz =(?= -12.58602

I 7 “H= -9.74261

where the numerical values are obtained from table III
(or equations (11)), in which n = 20. If’determlnuts
are used to solve equations (3), the minors involved In
the process may be identified as follows:

Ml = nE - @ = 14.56769

?82=CD - nB = -1.92257

‘3 = BD - CE = -2.00783

“M4 =m- C’ = 2,10478

MS =Bo -AD= -2.09533

M6 =AE- B2 = 3.35384
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The four determinants necessary to the solution may be
evaluated by use of the minors and sunmation identities:

Al = AMl + B% + CM3 = 1.34826

A2 = FM1 + GM2 + HM3 = 0.77878

A3 = FM2 + G?% + HM5 = -0040451

A4 = FM3 + GM5 + HM6 = -0.37943

The constants may be evaluated by the

A2
a ‘q = 0.57762

A3
b ‘q= -0.30002

following ratios:

A4
c ‘~ = -0.28142

The numerical work performed In this appendix has
been carried to five decimal places to maintain computa-
tional precision. Because the original data were
accurate to only three significant figures, only three
significant figures are retained In the final answer.
The values used are therefore

a = 0.578

b = -0.300

c= -0.281

. . . —.— . . . . , ,, ,.,,
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N

‘T~

Te

‘8

ATg

‘g80

Th

we

,. . . ......Appendix.B .. .-._.,-.... .

SYMBOL8 “

engine crankshaft speed, rpm

coollng-air temperature (stagnation-air temperature
in front of engine), ‘F

e he charge-air temperature ahead of carburetor,
T F

mean effective gas temperature, ‘F

increment of mean effective gas temperature
@ee reference 7)

reference mean effective gas ternerature (for
800”F charge-air temperature), ~~

reference head temperature (average indication of
all imbedded head thermocouples

J
or all rear-

spark-plug gasket thermocouples , ‘F

weig~t rate of charge-air flow (without fuel),--
-lb/see

a,b,c,cl constants

d blower impeller diameter, ft

n number of test points

‘ AP cooling-air pressure drop across the engine,
in. water

r blower gear ratio

5 deviation of a datum value from the fitted curve

u
a cooling-air-densityratio based on stagnation

density in front of engine

Cs log c1

x= 10g We

I .— —— ——.. — . -———-— . — —
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Zz log UaAP

,
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TABLE I

COOLING DATA AND CORRELATION COMPUTATIONS

z
o
.

cr..&w. R-.28OOB-seriesengine, 10” blower,
imbedded thermocouples, nonaromatic fuel.

Data from reference 7.1 NAIIUNAL AilVISUHY

COMMITTEE FOR AERONAUTICS

4
—.

Fuel
flow
lbfir

2 8column 16

-t-

“5 6 12 15 4 19

~el.89

aaAP

1 3 7 9 11

;arbu-
rotor
;emper.
ature
(°F)

harge-
air
flow
lb/h )

~;- ’680
ratio (oF)

1.92
e

aaAp

h-ake
iorse
jower

1100
1100
1100
1100
1100

1100
1100
1100
1100
1100

1100
1100
1100
1100
1100

600
800
990
1200
600

LiT
g

(OF)

Th

:°F)

’13
(OF)

‘h- ‘a

‘g-%

we

lb/aec

aaAp

in. water;

1.92
‘erest

240

241

1

2120
2120
2120
2120
2120

2120
2120
2120
2120
2120

2120
2120
2120
2120
2120

2120
2120
2120
2120
2120

69
71
72
73
73

ii
79
79

g

$

g

71

)$.;

31:1
25.6
19.3

13.1

9:i
$!
.

31.4

2:8

J:?

IJ?.5
1 .5

$5
.

331
339
33
237
385

~

362

%
g:

396

338
$$

337

0.264
.277
.293

:?$

fiJ

.304

.370

.299

.291

.323

.360

.34

.3?4

.273

.309
●34
.37i
.276

2.234
2.215
2.220
2.203
2.170

2.160
2.1 3

?2.1 5
2.131
2.175

2.181

: :%3
2.105
2.4

1.291

;:%
2.307
1.282

).096
.110
.131
.157
.203

.296

.398

.126

.25
t.12

.126

.197

.257

.30
i.20

.116

.15
3

:%3
;lq

.109

XJ

.230

:’R?J

:3?
●W3

d&

g

.121

g

.113

4.57
4.50,

~:i$
.

IG29
-----
-----
-----
4.34”

4.36
---A.
4.20
-----
4.22

1.62
2.46

{:32
1.60

0.106
.122
dt

.224

.327
-------
-------
-------
.ll+o

.139
-------
.284

-------
.287

.120

MJj

.113

.07881160

.0791115
JJJ9Jq

.0795115

.07801167

.07651180

% %!
I

If 2.07 118
.07
.0785;i6;
.075 1171
i.0791176

1
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TABLE II
?
c1

COOLING DATA AND COMPUTATION OF GAS TEMPERATURE >

>

[P. i%W. R-.28ooB-s.rhs mgtn., low MCW.P,
lmbediledthermocouples,nonaromatlc fiel. NAIIONAL ADVISURY

Data from reference 72
COMMITTEE FOR AERONAUTICS

“AJ
?3

z
0
.

r

I N3
lx
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TABLS III

FIRST LSAST-SQUARESCORRELATION OF SNGEiE-COOLIN5

DATA FRCM TABLE I NA1KJNAL#DVISURY
COMMITTEEFOR AERONAUTICS

z
o
.

712

—.—

13

——

4

r(x,z)

0.56981
-.’j5202
-.52918

q;;;

::AJ34J

$?
~: s+
-.5 31

::w’xi

::&&l
-.

-.556~
::g~
-.IQ21

4-.5 77

St9

1621

‘e
lb/see

2.234
2.215
2.220
2.203
2.170

2.160
2.13

22.15
2.131
2.175

2.181

::%

z:%

1.291

::%
:.;:;
.

T45

X2 X2

7 I 8 I 9 I
10

I 113 6

x

——

1.3J+9ck
.34537

:1$3:
.33646

.5544

.333
{

%a

.33866

.33264

.33001

.32325

.33062

:%’;g
.28937
.363q
.10789

.12224

Columl 15 :
—

eat

—

J+~o

4!1

.

—

bzu

1.20163
.19949
.20005
.19812
.19434

.19318

.19236

:EfK
.1992

.19561

.19213

.1061
1.I671

.19097

a#:

.1674

:%$’

6

I

0.264
.277
.293
.310
.342

:g

.304

.370

.299

.291

.323

:$%
.364

.273

.309

.34
8.37

.276

0.49001
-.47008

;$gij

-.33516
-.2601

t
::$$

::!’%?3
-.35105
-.29330
-.35017

::$

Y::;kg6

.0.00859
-.Gqj50
X%J

-.00605

:%;%
.011

~.0099
-.Ooli$

%&f

.00173

-.00740
.00GI$
.0024
-.00330
.00568

Jo::Jxlo&

.00002

.00001

.00005

.00001+

.00021+

.0002
d.Ooo

.00010

D
.00021
D
.00027
0

.Wwj
D
.00001
.00001
.00003

I I I I

2.95038-9.74261-u.58602z5.5025033.24726 0.00001Slm D.00157
1 I I I

a = o-578 “r
b = -0.300 Standarddadatlan= ?0.0089
C = -0.281 Probableerror= *0.otiO



TABLS IV

NAIIUNALAdVISWIY
COMMITTEEFORAERONAUTICS

DATA FSOM TABLE I

1

%

8 YT=

+

11$ 15 ; 16

f(x,z) 6
62

2 5 I 6

I_

X2 x

3 7 11
I

12 13

bz

—

*t

—

4

&

—

—

I

13aAP

in.water
XY Y

[lb/sec

2.234
2.215
2.220
2.203
2.170

2.160
2.15

82.11
2.18
2.J3

M%
1.947
2.307
1.282

——

1
.o.0~801.63347
-.47361.6703
-.795 iI.9276
-.7~6291.408

3-.599031.2855

-.49821.1172
i

-“d:; M@
::519
-.51231.1732

4J;

31:1
25.6
19.3

13.1
31.1

&
.

$}

I&
.

1.12186 o.349ct
.11928.34537
.11996.34635

:;:;:::M

“’~ 33!!
.1188 :33 6
.1 69 .33 6
.1 91 .33011
.10931.33062

:&t; :::32
Wj; .;:g37

.0116J+:1073

0.49693
-.47672

i$g

:V99$

+~lg
-.35512

::$;;~

%
-.355
-.350
-.35055

0.57216-0.006240.00004
“.554 -.00343.Oooo1
-.5$ -.002190.

W! -:~g ‘.oo~

::##J -.00590
J

;.0000

::B %Jj t#OOO

-.44099 .002090

1-.63Y31.1033
t-.592351.1137

-.26791.1522

!k&
-.842 1.1583?
-. 31.15229

..55626-.00758.00006
-.la62

k

.000580
-.60~7 .00300●0oool

::53$ -:% :%%%
1 ,

I
1 1

Slm ,.94411.4327814.46927 7.528819.9163+9.586246.06127
1 1 1

;: -Wi Standard deviation = fO.0051

0 = -0.27 Probableerror= *0.00~



TABLE V :
0
>

.00LING DATA AND CORRELATION COMPUTATIONS ,. >
m

~. &W. R-2800 B-series engine, km bIowep,
hhddod thermocouples,aromatlo-1.

unpubl~aheddata> NAIIONAL ADVISORY ,

COMMITTEE FOR AERONAUTICS

5’

z
o
.

T 3

Xmrge-
alr
rlOw
(lb/hr ]

2

N
rpm)

4 13

T~-Ta

Tg-%

..-—

T14 155 b

yi;-‘gdo
ratio (°F)

O.O89 1158
J
:07;;H;

.09311
JJ55 1$

02 1

8!
. 99 1150

:072;;:;;
z.071 117

i.0762117
.07691170

.07661171

:x: :g03117

.07771165

7 8 9

—

I’es

—

36

—

t

Brake
Run horse

power

1 1190
2 1020

1
860
670

z
1150
970

~ :;9:

i10 50
11 640
12 550
13 720

p 6g:

12 10
?120

ii 1180

we ~gl.85

lb/aec ) UaAP
,.

Carbu-
rator
temper.
ature
(°F)

Ta Th

(%) (°F)

’13
(°F)

Fuel
rlOw
;lb/hr :

ATg

(°F)

o .Ap

in. water

q 20.391
.317
.2389

1:3 .1652
2.231 .356
1.950 z.170

19.0
70:;

II
8

8;:;

82.0
83.0
77.5

L
1*5

67:;

66.0
69.0
72.0
77*5
71.0

8010

i
000
010

J
020
030

7020

8040
9010
5030
5030

w
o
0

i w
800

8
z50
060

2120
2120
2120
2120
2290
2290

2490
2490
2490
2290
2700
2700

2120
2120
2700
2700
2120

11.0
10.8
10.8
11.2

E: k

20.
20.Z
16.0
7.6

;?:;

22.
21● ii

i?
2*
6.

21.9

0:$;7

J●34
.311
.386
.311

.336

.362

.276

.351

.297

.277

;$;
.293
.299
.320

2.235 .2135
2.503 .26 5
1*397 z●11 2
1. 97

i

;$;
1. 03
10 83 .1202

u29
1211

2?
124

;22;

1.403:.0839
2●* ----
2.
Y

‘.1369
2.61 ----
2.239 ----

I

. .



TABLE VI

FIRST LEAST-SQUARES CORRELATION ENGINE-COOLINGOF

vDATA FROMTABLR

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

——

4T45Xz X2

.—

6 12Colimn 1 2

UaAP

in. water

11.0
10.8
10.8
11.2
12.
20.k

20.
20.z
~6.o

7.6
13.1
21.8

;;

21.9

3

S-T,

’13-Th

o.
q
:54
.311
.386
.311

.336

.362

.276

.351

.297

.277

4;

.293

.299

.520

7 13 15

6

.0.0052
.0026
.0048

.:;3
.Ooll+

.0026

.0067
-.0022
.0065

-:P%

-.0053
-.0127

.Olii

.000

-.0119

re‘9
we

lb\aeo ) Lx--LRIM x f(x,z)

o. 96c
&

::46;;

:Ji’i’;

::ti%
-.569
ii-.612

-.5301
-.5515

::@:
-*53

X.&!

ax

2I.1 38
.111
.1*

:$?
.1613

.1947

.2224

.0810

.0810

.0821

.1262

.0821

.1956

.1956

.2372

.1954

.0.4012 -o.41781.0441.0845
-.lt3791.03341.0675

::i% ~:4;v::.0~ 1.067

h Jj
-.072 .~921.1OJ

-.5201.09341.195
~:5072 2-.6641.31391.723

36 ).00003
.00001

2.22

$
k91
2.231
1.950

2.233
2.503
1.397

‘i

1.9.7
1.03
1.83

::%

::%
2.239

——

-0.1393
-.1223
-.102C

::%

-.1653

::3??
-.0660
-.076

2-.121

-.0888

:::q
-.222
-.1732

2.2653

.00002

.00002

.00001

.00000

: j+g ~-.6231.31601.7319
-.5791.3191.7263

.d
;:gg ;;g ;:;~ ;!g
-.5575 . .

.00001

.Ooool+

.00000

.00004

.00001

.00004

-.& 8 -.8411.34831.8179
:@ -.66231.33851.7816

-.80601.51192.258
-.i$j :::~;;;:;{%::;;2!-.

: %%?
.00000
.00021
.0004

~
8.375410.4I340.9446261148415.9326 @Jh58 I 0.0005sum .00077

a = 0.558
b = -0.26
c = -0.2L

Standerd deviation= fO.0067
Probable●rror = *0.0045 . .



1

—

tls

—

63

—

—

—

hln

.

1
2
3
4
5

6
8

1:
11

E
14
16
—
1=1

1

%

lb/see~

2.225
1.944
1,669
1.394
2.231

1.950
2.233
2.503
1.39’7
1.397

1.403
1.683
1.403
2.242

2

oaAp

(in. water)

11.0
10.8
10.8
11.2
12.4

20.6
20.7
20.6
16.0
7.6

13.1
21.8
22.3
32.5

—

3

‘h-Ta

‘S-Th

0.327
.377
.348
.311
.386

.31,1

.336

.362

.276

.351

.297

.277

.249

.293

sum

TANIJ3VII

FINALLEAST-SQUARESCORRELATIONOF

F80MTA&E V

ENGINE-COOLING

4 5 6 7 8 9 10 11

IiATA

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Xz X2 x W Y yz z =2

1.36170.1206 0.3473 -0.1393.0.401Z
.2983 .0833 .288’7-.1223 -.4237
.2299 .0496 .2225 -.1020 -.4584
.1514 ●0208 .1443 -.0?32 -.5072
.3810 .1215 .3485 -.1441 -.4134

.3810 .0841 .2900 -.1471 -.5072

.4592 .1217 .3469 -.1653 -.4’?37

.5236 .1588 .3985 -.1759 -.4413

.1748 .0211 .1452 -.0812 -.5591

.1279 .0211 .1452 -.0660 -.4547

H
-0.417 1.041 1.0845
-.437 1.033 1.0679
-.4’73 1.033 1.0679
-.532 1.0492 1.1008
-.452 1.093 1.1955

1
-.666 1.3139 1.’7263
-.6234 1.3160 1.7319
-.5798 1.3139 1.7268
-.6732 1.2041 1.4499
-.400 .8808 .775s

.2842 1.0197 3.5500 -1.6958-6.8615-s.2122

a = 0.563
b = -0.305 Standard devlatlon = iO.0040

c = -0.271 Probable error = tO.0027

ax I b?,

I

).1955 -0.3175
.1625 -.3151
.1252 -.3151
.0812 -.s199
.1961 -.3334

.1632 -.4006

.1964 -.4012

.2243 -.4006

.0817 -.:671

.0817 -.2.586

.0828 -.3407

.1272 -.4081

.0828 -.4111

.1973 -.4610

14

f(x, z)

.0.39s4
-.4240
-.4613
-.5101
-.4087

-.5068
-.4762
-.4477
-.5568
-.4563

-.5293
-.5523
-.5997
-.5351

sum

151’16
I

t

6 62

-0.00780.00006
.0003 0
.0029 ‘.00001
.0029 .00001

-.0047 .00002

.0016 0

.0025 .00001

.0064 .00004
-.0023 .00001
.0036 .00001

.0021 0
-.0052 .0000:
-.0041 .00002
.00200
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Figs. 1,”2

‘h -

‘i% -

.- 4poo 6,0008,00010,000
Charge-air flow, lb/%r

Figure l.- Construction curve for graphical correlation of
cylinder-head temperatures. Fuel-afr ratio, 0.08; cooling-
alr pressure drop, 4.2 inches of water.
reference 7. (See table I.)

Data taken”from

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

Th -

‘g -

.—
5 8 10 20 30 ~ 40 50

oaAp, in. of water

Figure 2.- Construction curve for graphical correlation of
cyllnder-head temperatures. Fuel-alr ratio,
air flow, 7750 pounds per hour.

0.08; charge-
Dat& taken from reference.

(See table I.)
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Fig. 3

.

.—
.06 .08 .1 .15

~el.76
—,
~aAp

.2 .3 .4 .5

(lb/see)
1.76

in. of water

Figure3.- Qraphlcal correlation of cylinder-head temperatures.
P. & W. R-2800 B-seriesengine;Imbeddedthermocouples.Data
takenfrom reference7. (SeetableI and equation(8).)
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. .,

Fig. 4

.,.-,.,.. —

..

.
.

F@me L.- Varlatlon of reference mean effective gas temperature
wtth fuel-ah ratio. P. & W. R-2800B-8erleSenginecylinder
head; nonaromatlc fuel. Data taken from reference 7. Use with
figures 3 and 6. (See table IX and equation (9).)
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..,. .,..,, ,., ~ .— —

.06 .08 .1 .15 .2 .3 .4 .5 .6
~~1.92

(lb/seo)1*92
flaAP ‘ in. of water

Fl&we 5.- Flrat leaat-aquarea correlation of data that ware
correlated graphically in figure 3. (See table 111 ati
equation (13).)

NATIONAL ACIVISOfiy

COMMITTEE FOR AERONAUTICS

Figs. 5,6

..

‘if?%:

~~1.89
(lb/aec)1”89

uaAp ‘ in. of water

6.- Fhal least-squares correlation of s lect data
figure 3. (See table IV and equation (i).)

.. —-. —— .—. ..—
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.

5-
Z

z
0
.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3!)
COOlin&yairpreeeure drop, Ap, in. water

Figure 7.- A comparisonof a least-equareacorrelationwith a graphfoa~,
oorrelatj.onbased on calculatedhead temperature.
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NACA ARR No. L4H23 Fig. 8

Th - Ta

~

.G .06 .08 .1 .15 .2 .3 .4 .5 .6
Wel“85 (lb/sec)1”85
aa&p ‘ in. of water

Figure8i- Flnal leaat-squarea correlation of mlscellaneoue
data not adapted to graphical correlation. (See table VII
and equatton (15).)
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